Search results
Results from the WOW.Com Content Network
In order theory, the least fixed point of a function from a partially ordered set (poset) to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique.
For a relational signature X, FO[PFP](X) is the set of formulas formed from X using first-order connectives and predicates, second-order variables as well as a partial fixed point operator used to form formulas of the form [, ], where is a second-order variable, a tuple of first-order variables, a tuple of terms and the lengths of and coincide with the arity of .
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.
In discrete mathematics, a discrete fixed-point is a fixed-point for functions defined on finite sets, typically subsets of the integer grid . Discrete fixed-point theorems were developed by Iimura, [ 1 ] Murota and Tamura, [ 2 ] Chen and Deng [ 3 ] and others.
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...
In mathematics, Lawvere's fixed-point theorem is an important result in category theory. [1] It is a broad abstract generalization of many diagonal arguments in mathematics and logic, such as Cantor's diagonal argument, Cantor's theorem, Russell's paradox, Gödel's first incompleteness theorem, Turing's solution to the Entscheidungsproblem, and Tarski's undefinability theorem.
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.
The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.