Search results
Results from the WOW.Com Content Network
The magazine's 1984 review stated that "TK!Solver is superb for solving almost any kind of equation", but that it did not handle matrices, and that a programming language like Fortran or APL was superior for simultaneous solution of linear equations. The magazine concluded that despite limitations, it was a "powerful tool, useful for scientists ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
A formula editor is a computer program that is used to typeset mathematical formulas and mathematical expressions. Formula editors typically serve two purposes: They allow word processing and publication of technical content either for print publication, or to generate raster images for web pages or screen presentations.
Microsoft Math contains features that are designed to assist in solving mathematics, science, and tech-related problems, as well as to educate the user. The application features such tools as a graphing calculator and a unit converter. It also includes a triangle solver and an equation solver that provides step-by-step solutions to each problem.
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
For example, the computation of polynomial greatest common divisors is systematically used for the simplification of expressions involving fractions. This large amount of required computer capabilities explains the small number of general-purpose computer algebra systems.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.