Search results
Results from the WOW.Com Content Network
Photo-aging is another degradation route for polycarbonates. Polycarbonate molecules (such as the aromatic ring) absorb UV radiation. This absorbed energy causes cleavage of covalent bonds which initiates the photo-aging process. The reaction can be propagated via side chain oxidation, ring oxidation or photo-Fries rearrangement.
Perhaps surprisingly, the effect of temperature is often greater than the effect of UV exposure. [5] This can be seen in terms of the Arrhenius equation, which shows that reaction rates have an exponential dependence on temperature. By comparison the dependence of degradation rate on UV exposure and the availability of oxygen is broadly linear.
The prediction of the ageing of plastic materials is a subject that concerns both users and manufacturers. It covers plastic materials (polymers, fillers and various additives) or intermediates that are the transformers that use their thermoplastic property for the manufacture of objects by processes such as extrusion, injection molding, etc.
UV testing is a component of aging tests designed to simulate the long-term effects of ultraviolet (UV) radiation exposure on materials, products, and coatings. [9] UV radiation, a component of sunlight, is one of the primary contributors to material degradation over time.
A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. [1] These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light.
The energy of the exciton is transferred to a chlorophyll molecule (P680, where P stands for pigment and 680 for its absorption maximum at 680 nm) in the reaction center of photosystem II via resonance energy transfer. P680 can also directly absorb a photon at a suitable wavelength.
Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition.Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. [1]
A more efficient analysis of copolymer molecular mass and composition is possible using GPC combined with a triple-detection system comprising multi-angle light scattering, UV absorption and differential refractometry, if the copolymer is composed of two base polymers that provide different responses to UV and/or refractive index.