enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Once a regression model has been constructed, it may be important to confirm the goodness of fit of the model and the statistical significance of the estimated parameters. Commonly used checks of goodness of fit include the R-squared , analyses of the pattern of residuals and hypothesis testing.

  4. Mathematical model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_model

    The problem of rational behavior in this model then becomes a mathematical optimization problem, that is: (,, …,) subject to: =, =,, …,. This model has been used in a wide variety of economic contexts, such as in general equilibrium theory to show existence and Pareto efficiency of economic equilibria.

  5. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    The goal of multinomial logistic regression is to construct a model that explains the relationship between the explanatory variables and the outcome, so that the outcome of a new "experiment" can be correctly predicted for a new data point for which the explanatory variables, but not the outcome, are available.

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Endogeneity (econometrics) - Wikipedia

    en.wikipedia.org/wiki/Endogeneity_(econometrics)

    The endogeneity problem is particularly relevant in the context of time series analysis of causal processes. It is common for some factors within a causal system to be dependent for their value in period t on the values of other factors in the causal system in period t − 1.

  8. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression [1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations).

  9. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response. RSM became very useful because other methods available, such as the theoretical model, could be very cumbersome to use, time-consuming, inefficient, error-prone, and unreliable.