Search results
Results from the WOW.Com Content Network
first checks whether x is less than 5, which it is, so then the {loop body} is entered, where the printf function is run and x is incremented by 1. After completing all the statements in the loop body, the condition, (x < 5), is checked again, and the loop is executed again, this process repeating until the variable x has the value 5.
INT sum sq := 0; FOR i WHILE print(("So far:", i, new line)); # Interposed for tracing purposes. # sum sq ≠ 70↑2 # This is the test for the WHILE # DO sum sq +:= i↑2 OD Subsequent extensions to the standard ALGOL 68 allowed the to syntactic element to be replaced with upto and downto to achieve a small optimization. The same compilers ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum of two abundant numbers is 46. [5] An abundant number which is not a semiperfect number is called a weird number. [6] An abundant number with abundance 1 is called a quasiperfect number, although none have yet been found.
Incrementation, also known as the successor operation, is the addition of 1 to a number. Summation describes the addition of arbitrarily many numbers, usually more than just two. It includes the idea of the sum of a single number, which is itself, and the empty sum, which is zero. [93] An infinite summation is a delicate procedure known as a ...
A running total or rolling total is the summation of a sequence of numbers which is updated each time a new number is added to the sequence, by adding the value of the new number to the previous running total. Another term for it is partial sum. The purposes of a running total are twofold.
For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40} This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:
Otherwise, any series of real numbers or complex numbers that converges but does not converge absolutely is conditionally convergent. Any conditionally convergent sum of real numbers can be rearranged to yield any other real number as a limit, or to diverge. These claims are the content of the Riemann series theorem. [31] [32] [33]