Search results
Results from the WOW.Com Content Network
The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb. For example: The peaks of a 3D polyhedron or plane tiling are its 0-faces or vertices. The peaks of a 4D polytope or 3-honeycomb are its 1-faces or edges.
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
Faces are reduced to half as many sides, and square faces degenerate into edges. For example, the tetrahedron is an alternated cube, h{4,3}. Diminishment is a more general term used in reference to Johnson solids for the removal of one or more vertices, edges, or faces of a polytope, without disturbing the other vertices.
A parallelepiped where all edges are the same length; A cube, except that its faces are not squares but rhombi; Cuboid: A convex polyhedron bounded by six quadrilateral faces, whose polyhedral graph is the same as that of a cube [4] Some sources also require that each of the faces is a rectangle (so each pair of adjacent faces meets in a right ...