Search results
Results from the WOW.Com Content Network
A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle. The inradius or filling radius of a given outer figure is the radius of the inscribed circle or sphere, if it exists.
This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals , circumscribing quadrilaterals , and circumscriptible ...
A tangential polygon has a larger area than any other polygon with the same perimeter and the same interior angles in the same sequence. [ 6 ] : p. 862 [ 7 ] The centroid of any tangential polygon, the centroid of its boundary points, and the center of the inscribed circle are collinear , with the polygon's centroid between the others and twice ...
In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle. Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint.
All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.
Illustration of Poncelet's porism for n = 3, a triangle that is inscribed in one circle and circumscribes another.. In geometry, Poncelet's closure theorem, also known as Poncelet's porism, states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same ...
A tangential polygon is one having an inscribed circle tangent to each side of the polygon; these tangency points are thus concyclic on the inscribed circle. Let one n -gon be inscribed in a circle, and let another n -gon be tangential to that circle at the vertices of the first n -gon.