enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero matrix - Wikipedia

    en.wikipedia.org/wiki/Zero_matrix

    In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of m × n {\displaystyle m\times n} matrices, and is denoted by the symbol O {\displaystyle O} or 0 {\displaystyle 0} followed by subscripts corresponding to the ...

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  5. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    There is exactly one zero matrix of any given size m × n (with entries from a given ring), so when the context is clear, one often refers to the zero matrix. In a matrix ring, the zero matrix serves the role of both an additive identity and an absorbing element. In general, the zero element of a ring is unique, and typically denoted as 0 ...

  6. Sparse matrix - Wikipedia

    en.wikipedia.org/wiki/Sparse_matrix

    In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of ...

  7. Matrix of ones - Wikipedia

    en.wikipedia.org/wiki/Matrix_of_ones

    The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory.For example, if A is the adjacency matrix of an n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA. [7]

  8. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    For example, every nilpotent matrix squares to zero. The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible. The only nilpotent diagonalizable matrix is the zero matrix. See also: Jordan–Chevalley decomposition#Nilpotency criterion.

  9. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form. Once all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros elsewhere, the ...