Search results
Results from the WOW.Com Content Network
The truncated icosahedral graph. According to Steinitz's theorem, the skeleton of a truncated icosahedron, like that of any convex polyhedron, can be represented as a polyhedral graph, meaning a planar graph (one that can be drawn without crossing edges) and 3-vertex-connected graph (remaining connected whenever two of its vertices are removed ...
In geometry, the rectified truncated icosahedron is a convex polyhedron. It has 92 faces: 60 isosceles triangles , 12 regular pentagons , and 20 regular hexagons . It is constructed as a rectified , truncated icosahedron , rectification truncating vertices down to mid-edges.
The truncation involves cutting away corners; to preserve symmetry, the cut is in a plane perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners, and an example can be found in truncated icosahedron constructed by cutting off all the icosahedron's vertices, having the same symmetry as the ...
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
Net The truncated triakis icosahedron , or more precisely an order-10 truncated triakis icosahedron , is a convex polyhedron with 72 faces: 10 sets of 3 pentagons arranged in an icosahedral arrangement, with 12 decagons in the gaps.
The pentakis truncated icosahedron is a convex polyhedron constructed as an augmented truncated icosahedron, adding pyramids to the 12 pentagonal faces, creating 60 new triangular faces. It is geometrically similar to the icosahedron where the 20 triangular faces are subdivided with a central hexagon, and 3 corner triangles.
In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, [1] great rhombicosidodecahedron, [2] [3] omnitruncated dodecahedron or omnitruncated icosahedron [4] is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.
This polyhedron is the truncation of the great icosahedron: . The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.