enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]

  3. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...

  4. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    It is designed to follow the structure and workflow of NumPy as closely as possible and works with various existing frameworks such as TensorFlow and PyTorch. [5] [6] The primary functions of JAX are: [2] grad: automatic differentiation; jit: compilation; vmap: auto-vectorization; pmap: Single program, multiple data (SPMD) programming

  5. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).

  6. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.

  7. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    AutoDifferentiation is the process of automatically calculating the gradient vector of a model with respect to each of its parameters. With this feature, TensorFlow can automatically compute the gradients for the parameters in a model, which is useful to algorithms such as backpropagation which require gradients to optimize performance. [34]

  8. Volta (microarchitecture) - Wikipedia

    en.wikipedia.org/wiki/Volta_(microarchitecture)

    Tensor cores: A tensor core is a unit that multiplies two 4×4 FP16 matrices, and then adds a third FP16 or FP32 matrix to the result by using fused multiply–add operations, and obtains an FP32 result that could be optionally demoted to an FP16 result. [12] Tensor cores are intended to speed up the training of neural networks. [12]

  9. Tucker decomposition - Wikipedia

    en.wikipedia.org/wiki/Tucker_decomposition

    For a 3rd-order tensor , where is either or , Tucker Decomposition can be denoted as follows, = () where is the core tensor, a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of , which are defined as the Frobenius norm of the 1-mode, 2-mode and 3-mode slices of tensor respectively.