Ads
related to: joule thomson expansion tank size chart gallonssupplyhouse.com has been visited by 100K+ users in the past month
ebay.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...
So for >, an expansion at constant enthalpy increases temperature as the work done by the repulsive interactions of the gas is dominant, and so the change in kinetic energy is positive. But for T < T inv {\displaystyle T<T_{\text{inv}}} , expansion causes temperature to decrease because the work of attractive intermolecular forces dominates ...
On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, to explain the Joule–Thomson effect, and in other less usual cases. The deviation from ideality can be described by the compressibility factor Z.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Joule–Thomson_cooling&oldid=775532255"
The Joule effect (during Joule expansion), the temperature change of a gas (usually cooling) when it is allowed to expand freely. The Joule–Thomson effect , the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Hampson–Linde cycle differs from the Siemens cycle only in the expansion step. Whereas the Siemens cycle has the gas do external work to reduce its temperature, the Hampson–Linde cycle relies solely on the Joule–Thomson effect; this has the advantage that the cold side of the cooling apparatus needs no moving parts. [1]
An expansion tank or expansion vessel is a small tank used to protect closed water heating systems and domestic hot water systems from excessive pressure. The tank is partially filled with air, whose compressibility cushions shock caused by water hammer [ citation needed ] and absorbs excess water pressure caused by thermal expansion .
Ads
related to: joule thomson expansion tank size chart gallonssupplyhouse.com has been visited by 100K+ users in the past month
ebay.com has been visited by 1M+ users in the past month