enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.

  4. Unit in the last place - Wikipedia

    en.wikipedia.org/wiki/Unit_in_the_last_place

    Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even.

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  6. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    It is related to precision in mathematics, which describes the number of digits that are used to express a value. Some of the standardized precision formats are Half-precision floating-point format; Single-precision floating-point format; Double-precision floating-point format; Quadruple-precision floating-point format

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.

  8. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2 7f7f = 0 11111110 1111111 = (2 8 − 1) × 2 −7 × 2 127 ≈ 3.38953139 × 10 38 (max finite positive value in bfloat16 precision) 0080 = 0 00000001 0000000 = 2 −126 ≈ 1.175494351 × 10 −38 (min normalized positive value in bfloat16 precision and single-precision floating point)

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    For instance, 1/(−0) returns negative infinity, while 1/(+0) returns positive infinity (so that the identity 1/(1/±∞) = ±∞ is maintained). Other common functions with a discontinuity at x =0 which might treat +0 and −0 differently include Γ ( x ) and the principal square root of y + xi for any negative number y .