Search results
Results from the WOW.Com Content Network
Like many other medical conditions, obesity is the result of an interplay between environmental and genetic factors. [2] [3] Studies have identified variants in several genes that may contribute to weight gain and body fat distribution, although only in a few cases are genes the primary cause of obesity. [4] [5]
The extreme endpoint of this distribution are the so-called 'monogenic' obesities where most of the impact on body weight can be tied to a mutation in a single gene that runs in a single family. The classic example of such a genetic effect is the presence of mutations in the leptin gene. [29]
Set point theory does not on its own explain why body mass index for humans, measured as a proxy for fat, tends to change with increasing age or why obesity levels in a population vary depending on socioeconomic or environmental factors (or why weight tends to change for an individual when socioeconomic status and environment change). [4]
Genetic load may increase when deleterious mutations, migration, inbreeding, or outcrossing lower mean fitness. Genetic load may also increase when beneficial mutations increase the maximum fitness against which other mutations are compared; this is known as the substitutional load or cost of selection.
The changes that constitute acquired characteristics can have many manifestations and degrees of visibility, but they all have one thing in common. They change a facet of a living organism's function or structure after birth. For example: The muscles acquired by a bodybuilder through physical training and diet. The loss of a limb due to an injury.
Where in the absence of one or more environmental factors a condition will not develop in an individual, even with high concordance rates, the proximate cause is environmental, with strong genetic influence: thus "a substantial role of genetic factors does not preclude the possibility that the development of the disease can be modified by ...
Heritability can also change as a result of changes in the environment, migration, inbreeding, or how heritability itself is measured in the population under study. [9] The heritability of a trait should not be interpreted as a measure of the extent to which said trait is genetically determined in an individual.
The genetic process of mutation takes place within an individual, resulting in heritable changes to the genetic material. This process is often characterized by a description of the starting and ending states, or the kind of change that has happened at the level of DNA (e.g,. a T-to-C mutation, a 1-bp deletion), of genes or proteins (e.g., a ...