enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch.class(classname, parentclass) function can be used to create object factories . When the constructor is called, torch initializes and sets a Lua table with the user-defined metatable, which makes the table an object.

  4. Open Neural Network Exchange - Wikipedia

    en.wikipedia.org/wiki/Open_Neural_Network_Exchange

    ONNX provides definitions of an extensible computation graph model, built-in operators and standard data types, focused on inferencing (evaluation). [6] Each computation dataflow graph is a list of nodes that form an acyclic graph. Nodes have inputs and outputs. Each node is a call to an operator. Metadata documents the graph.

  5. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).

  6. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  7. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  8. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The model is then trained on a training sample and evaluated on the testing sample. The testing sample is previously unseen by the algorithm and so represents a random sample from the joint probability distribution of x {\displaystyle x} and y {\displaystyle y} .

  9. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    Symbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity. No particular model is provided as a starting point for symbolic regression.