enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb damping - Wikipedia

    en.wikipedia.org/wiki/Coulomb_damping

    Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The effect of varying damping ratio on a second-order system. The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator ...

  4. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  5. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    This is responsible for the Coulomb damping of an oscillating or vibrating system. New models are beginning to show how kinetic friction can be greater than static friction. [52] In many other cases roughness effects are dominant, for example in rubber to road friction. [52]

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Torsion spring - Wikipedia

    en.wikipedia.org/wiki/Torsion_spring

    Its most well-known uses were by Coulomb to measure the electrostatic force between charges to establish Coulomb's Law, and by Henry Cavendish in 1798 in the Cavendish experiment [6] to measure the gravitational force between two masses to calculate the density of the Earth, leading later to a value for the gravitational constant.

  8. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2) density: kilogram per cubic meter (kg/m 3) diameter: meter (m) distance: meter (m) direction: unitless impact parameter meter (m)

  9. Rayleigh dissipation function - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_dissipation_function

    Moreover, the original theory is generalized from quadratic functions (˙) = ˙ ˙ to dissipation potentials that are depending on (then called state dependence) and are non-quadratic, which leads to nonlinear friction laws like in Coulomb friction or in plasticity.