Search results
Results from the WOW.Com Content Network
Particle-laden flows refers to a class of two-phase fluid flow, in which one of the phases is continuously connected (referred to as the continuous or carrier phase) and the other phase is made up of small, immiscible, and typically dilute particles (referred to as the dispersed or particle phase). Fine aerosol particles in air is an example of ...
The equation is only valid for creeping flow, i.e. in the slowest limit of laminar flow. The equation was derived by Kozeny (1927) [1] and Carman (1937, 1956) [2] [3] [4] from a starting point of (a) modelling fluid flow in a packed bed as laminar fluid flow in a collection of curving passages/tubes crossing the packed bed and (b) Poiseuille's ...
Chemical looping uses a metal oxide as a solid oxygen carrier. These metal oxide particles replace air (specifically oxygen in the air) in a combustion reaction with a solid, liquid, or gaseous fuel in a fluidized bed, producing solid metal particles from the reduction of the metal oxides and a mixture of carbon dioxide and water vapor, the ...
where m is the mass flow rate per unit area, ρ 1 and ρ 2 are the mass density of the fluid upstream and downstream of the wave, u 1 and u 2 are the fluid velocity upstream and downstream of the wave, p 1 and p 2 are the pressures in the two regions, and h 1 and h 2 are the specific (with the sense of per unit mass) enthalpies in the two regions.
The technique is closely related to using gas adsorption to measure pore sizes, but uses the Gibbs–Thomson equation rather than the Kelvin equation.They are both particular cases of the Gibbs Equations of Josiah Willard Gibbs: the Kelvin equation is the constant temperature case, and the Gibbs–Thomson equation is the constant pressure case. [1]
where is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), is the fluid velocity of the flow well away from the obstacle, and is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness). [1]
Since the average radius is usually something that can be measured in experiments, it is fairly easy to tell if a system is obeying the slow-diffusion equation or the slow-attachment equation. If the experimental data obeys neither equation, then it is likely that another mechanism is taking place and Ostwald ripening is not occurring.
Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition. [1] In engineering, airflow is a measurement of the amount of air per unit of time that flows through a particular device. It ...