Search results
Results from the WOW.Com Content Network
The above equations are the microscopic version of Maxwell's equations, expressing the electric and the magnetic fields in terms of the (possibly atomic-level) charges and currents present. This is sometimes called the "general" form, but the macroscopic version below is equally general, the difference being one of bookkeeping.
Proof of Maxwell's relations: There are four real variables ( T , S , p , V ) {\displaystyle (T,S,p,V)} , restricted on the 2-dimensional surface of possible thermodynamic states. This allows us to use the previous two propositions.
Maxwell's equations also inspired Albert Einstein in developing the theory of special relativity. [13] The experimental proof of Maxwell's equations was demonstrated by Heinrich Hertz in a series of experiments in the 1890s. [14] After that, Maxwell's equations were fully accepted by scientists.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
Because of the linearity of Maxwell's equations in a vacuum, solutions can be decomposed into a superposition of sinusoids. This is the basis for the Fourier transform method for the solution of differential equations. The sinusoidal solution to the electromagnetic wave equation takes the form
In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, [3] [4] [5] which is one of Maxwell's equations that form the basis of classical electromagnetism.
One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...
In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]