Search results
Results from the WOW.Com Content Network
The upwind differencing scheme is a method used in numerical methods in computational fluid dynamics for convection–diffusion problems. This scheme is specific for Peclet number greater than 2 or less than −2
Cross-flowing is a passive formation method that involves the continuous and aqueous phases running at an angle to each other. [9] Most commonly, the channels are perpendicular in a T-shaped junction with the dispersed phase intersecting the continuous phase; other configurations such as a Y-junction are also possible.
The following steps comprise the finite volume method for one-dimensional steady state diffusion - STEP 1 Grid Generation. Divide the domain into equal parts of small domain. Place nodal points at the center of each small domain. Dividing small domains and assigning nodal points (Figure 1) Create control volumes using these nodal points.
Fig 1:Flow domain illustrating false diffusion. In figure 1, u = 2 and v = 2 m/s everywhere so the velocity field is uniform and perpendicular to the diagonal (XX). The boundary conditions for temperature on north and west wall is 100 ̊C and for east and south wall is 0 ̊C. This region is meshed into 10×10 equal grids.
The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [ 1 ]
A perturbation to the surface of hot salty water results in an element of hot salty water surrounded by cold fresh water. This element loses its heat more rapidly than its salinity because the diffusion of heat is faster than of salt; this is analogous to the way in which just unstirred coffee goes cold before the sugar has diffused to the top.
In this method, the basic shape function is modified to obtain the upwinding effect. This method is an extension of Runge–Kutta discontinuous for a convection-diffusion equation. For time-dependent equations, a different kind of approach is followed. The finite difference scheme has an equivalent in the finite element method (Galerkin method ...
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.