Search results
Results from the WOW.Com Content Network
These two examples show that an electrical potential and a chemical potential can both give the same result: A redistribution of the chemical species. Therefore, it makes sense to combine them into a single "potential", the electrochemical potential , which can directly give the net redistribution taking both into account.
The abstract definition of chemical potential given above—total change in free energy per extra mole of substance—is more specifically called total chemical potential. [13] [14] If two locations have different total chemical potentials for a species, some of it may be due to potentials associated with "external" force fields (electric ...
An example is an electrochemical cell, where two copper electrodes are submerged in two copper(II) sulfate solutions, whose concentrations are 0.05 M and 2.0 M, connected through a salt bridge. This type of cell will generate a potential that can be predicted by the Nernst equation.
Shockley states are thus states that arise due to the change in the electron potential associated solely with the crystal termination. This approach is suited to describe normal metals and some narrow gap semiconductors. Figure 3 shows an example of a Shockley state, derived using the nearly free electron approximation.
Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
Different sized quantum dots emit different color light due to quantum confinement. Quantum dots have been gaining interest from the scientific community because of their interesting optical properties, the main being band gap tunability. When an electron is excited to the conduction band, it leaves behind a vacancy in the valence band called ...
The ionization energy is the minimum amount of energy that an electron in a gaseous atom or ion has to absorb to come out of the influence of the attracting force of the nucleus. It is also referred to as ionization potential. The first ionization energy is the amount of energy that is required to remove the first electron from a neutral atom.