Search results
Results from the WOW.Com Content Network
This lists the character tables for the more common molecular point groups used in the study of molecular symmetry.These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry.
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
The character table does not in general determine the group up to isomorphism: for example, the quaternion group Q and the dihedral group of 8 elements, D 4, have the same character table. Brauer asked whether the character table, together with the knowledge of how the powers of elements of its conjugacy classes are distributed, determines a ...
Hans Bethe used characters of point group operations in his study of ligand field theory in 1929, and Eugene Wigner used group theory to explain the selection rules of atomic spectroscopy. [13] The first character tables were compiled by László Tisza (1933), in connection to vibrational spectra.
The space of complex-valued class functions of a finite group G has a natural inner product: , := | | () ¯ where () ¯ denotes the complex conjugate of the value of on g.With respect to this inner product, the irreducible characters form an orthonormal basis for the space of class functions, and this yields the orthogonality relation for the rows of the character table:
The rule arises because in a centrosymmetric point group, IR active modes, which must transform according to the same irreducible representation generated by one of the components of the dipole moment vector (x, y or z), must be of ungerade (u) symmetry, i.e. their character under inversion is -1, while Raman active modes, which transform ...
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.
Center (group theory) Centralizer and normalizer; Character group; Character table; Class automorphism; Class function; Class of groups; Classification of finite simple groups; CN-group; Co-Hopfian group; Cohomological dimension; Commutator; Commutator subgroup; Complement (group theory) Complex reflection group; Component (group theory ...