enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph product - Wikipedia

    en.wikipedia.org/wiki/Graph_product

    In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.

  3. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Its unit element is the class of the ordinary 2-sphere. Furthermore, if a denotes the class of the torus, and b denotes the class of the projective plane, then every element c of the monoid has a unique expression in the form c = na + mb where n is a positive integer and m = 0, 1, or 2. We have 3b = a + b.

  4. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  5. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    John M. Howie, Fundamentals of Semigroup Theory (1995), Clarendon Press, Oxford ISBN 0-19-851194-9 M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs , De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7 .

  6. Cartesian product of graphs - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product_of_graphs

    The notation G × H has often been used for Cartesian products of graphs, but is now more commonly used for another construction known as the tensor product of graphs. The square symbol is intended to be an intuitive and unambiguous notation for the Cartesian product, since it shows visually the four edges resulting from the Cartesian product ...

  7. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    A cancellative semigroup is one having the cancellation property: [9] a · b = a · c implies b = c and similarly for b · a = c · a. Every group is a cancellative semigroup, and every finite cancellative semigroup is a group. A band is a semigroup whose operation is idempotent. A semilattice is a semigroup whose operation is idempotent and ...

  8. Monus - Wikipedia

    en.wikipedia.org/wiki/Monus

    Beyond monoids, the notion of monus can be applied to other structures. For instance, a naturally ordered semiring (sometimes called a dioid [6]) is a semiring where the commutative monoid induced by the addition operator is naturally ordered.

  9. Monad (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monad_(category_theory)

    Monads are to monoids as comonads are to comonoids. Every set is a comonoid in a unique way, so comonoids are less familiar in abstract algebra than monoids; however, comonoids in the category of vector spaces with its usual tensor product are important and widely studied under the name of coalgebras.