enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.

  3. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance.

  4. 2Sum - Wikipedia

    en.wikipedia.org/wiki/2Sum

    Provided the floating-point arithmetic is correctly rounded to nearest (with ties resolved any way), as is the default in IEEE 754, and provided the sum does not overflow and, if it underflows, underflows gradually, it can be proven that + = +. [1] [6] [2]

  5. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  6. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  7. Project Euler - Wikipedia

    en.wikipedia.org/wiki/Project_Euler

    If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. It is a 5% rated problem, indicating it is one of the easiest on the site. The initial approach a beginner can come up with is a bruteforce attempt. Given the ...

  8. 3-partition problem - Wikipedia

    en.wikipedia.org/wiki/3-partition_problem

    Conversely, in every solution of S u, since the target sum is 7 T and each element is in ( T /4, 7 T /2), there must be exactly 3 elements per set, so it corresponds to a solution of S r. The ABC-partition problem (also called numerical 3-d matching ) is a variant in which, instead of a set S with 3 m integers, there are three sets A , B , C ...

  9. First-fit bin packing - Wikipedia

    en.wikipedia.org/wiki/First-fit_bin_packing

    Here is a proof that the asymptotic ratio is at most 2. If there is an FF bin with sum less than 1/2, then the size of all remaining items is more than 1/2, so the sum of all following bins is more than 1/2. Therefore, all FF bins except at most one have sum at least 1/2. All optimal bins have sum at most 1, so the sum of all sizes is at most OPT.