Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line.
The slope of a circular helix is commonly defined as the ratio of the circumference of the circular cylinder that it spirals around, and its pitch (the height of one complete helix turn). A conic helix, also known as a conic spiral, may be defined as a spiral on a conic surface, with the distance to the apex an exponential function of the angle ...
It creates three-dimensional parametric models that include both geometry and non-geometric design and construction information. It updates all components, views and annotations automatically when changes are made. CATIA: A 3D modeling software used by architect Frank Gehry for his curvilinear buildings such as the Guggenheim Museum Bilbao. [22]
Helix. Tendril perversion (a transition between back-to-back helices) Hemihelix, a quasi-helical shape characterized by multiple tendril perversions; Seiffert's spiral [5] Slinky spiral [6] Twisted cubic; Viviani's curve
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Let φ 1 = 0, φ 2 = 2π; then the area of the black region (see diagram) is A 0 = a 2 π 2, which is half of the area of the circle K 0 with radius r(2π). The regions between neighboring curves (white, blue, yellow) have the same area A = 2a 2 π 2. Hence: The area between two arcs of the spiral after a full turn equals the area of the circle ...
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.