Search results
Results from the WOW.Com Content Network
The XNOR gate (sometimes ENOR, EXNOR, NXOR, XAND and pronounced as Exclusive NOR) is a digital logic gate whose function is the logical complement of the Exclusive OR gate. [1] It is equivalent to the logical connective ( ↔ {\displaystyle \leftrightarrow } ) from mathematical logic , also known as the material biconditional.
This explains why "EQ" is often called "XNOR" in the combinational logic of circuit engineers, since it is the negation of the XOR operation; "NXOR" is a less commonly used alternative. [1] Another rationalization of the admittedly circuitous name "XNOR" is that one begins with the "both false" operator NOR and then adds the eXception "or both ...
Exclusive or with one specified input, as a function of the other input, is an involution or self-inverse function; applying it twice leaves the variable input unchanged. A ⊕ B {\\displaystyle ~A\\oplus B~}
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of and is sometimes expressed as , ::, , or , depending on the notation being used.
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
In cryptography, the simple XOR cipher is a type of additive cipher, [1] an encryption algorithm that operates according to the principles: . A 0 = A, A A = 0, A B = B A, (A B) C = A (B C),
The list of mathematical instructions is ADD, SUB, AND, OR, XOR, and negated versions ANDN, ORN, and XNOR. One quirk of the SPARC design is that most arithmetic instructions come in pairs, with one version setting the NZVC condition code bits in the status register, and the other not setting them, with the default being not to set the codes ...