enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  3. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  4. Bicomplex number - Wikipedia

    en.wikipedia.org/wiki/Bicomplex_number

    Bicomplex numbers form an algebra over C of dimension two, and since C is of dimension two over R, the bicomplex numbers are an algebra over R of dimension four. In fact the real algebra is older than the complex one; it was labelled tessarines in 1848 while the complex algebra was not introduced until 1892.

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A negative real number −x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, ⁠ + ⁠ and ⁠ ⁠, where i is the imaginary unit. In general, any non-zero complex number has n distinct complex-valued n th roots, equally distributed around a complex circle of constant absolute value .

  6. Complex-base system - Wikipedia

    en.wikipedia.org/wiki/Complex-base_system

    Binary coding systems of complex numbers, i.e. systems with the digits = {,}, are of practical interest. [9] Listed below are some coding systems , (all are special cases of the systems above) and resp. codes for the (decimal) numbers −1, 2, −2, i. The standard binary (which requires a sign, first line) and the "negabinary" systems (second ...

  7. Dirichlet's unit theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_unit_theorem

    Note that if K is Galois over then either r 1 = 0 or r 2 = 0.. Other ways of determining r 1 and r 2 are . use the primitive element theorem to write = (), and then r 1 is the number of conjugates of α that are real, 2r 2 the number that are complex; in other words, if f is the minimal polynomial of α over , then r 1 is the number of real roots and 2r 2 is the number of non-real complex ...

  8. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    For n = 5, 10, none of the non-real roots of unity (which satisfy a quartic equation) is a quadratic integer, but the sum z + z = 2 Re z of each root with its complex conjugate (also a 5th root of unity) is an element of the ring Z[⁠ 1 + √ 5 / 2 ⁠] (D = 5). For two pairs of non-real 5th roots of unity these sums are inverse golden ratio ...

  9. Quinary - Wikipedia

    en.wikipedia.org/wiki/Quinary

    Quinary (base 5 or pental [1] [2] [3]) is a numeral system with five as the base. A possible origination of a quinary system is that there are five digits on either hand . In the quinary place system, five numerals, from 0 to 4 , are used to represent any real number .