Search results
Results from the WOW.Com Content Network
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
The radius of this circle, , can be determined by equating the magnitude of the Lorentz force to the centripetal force as = | |. Rearranging, the gyroradius can be expressed as = | |. Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge ...
The moment of inertia, ... where k is known as the radius of gyration around the ... Since the mass is constrained to a circle the tangential acceleration of the ...
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
The moment of inertia of an object, symbolized by , is a measure of the object's resistance to changes to its rotation. The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia.
Although they have different units, the gyration tensor is related to the moment of inertia tensor. The key difference is that the particle positions are weighted by mass in the inertia tensor, whereas the gyration tensor depends only on the particle positions; mass plays no role in defining the gyration tensor.
The radius is r=0.200 m = 200 mm, or a diameter of 400 mm. If one adds a factor of safety of 5 and re-calculates the radius with the admissible stress equal to the τ adm =τ yield /5 the result is a radius of 0.343 m, or a diameter of 690 mm, the approximate size of a turboset shaft in a nuclear power plant.
The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry, and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group T. All circles are similar. [12] A circle circumference and radius are ...