enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    Geometrically, when the scalar field f is defined over a plane (n = 2), its graph is a surface z = f(x, y) in space, and the line integral gives the (signed) cross-sectional area bounded by the curve and the graph of f. See the animation to the right.

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    It is straightforward to show that a vector field is path-independent if and only if the integral of the vector field over every closed loop in its domain is zero. Thus the converse can alternatively be stated as follows: If the integral of F over every closed loop in the domain of F is zero, then F is the gradient of some scalar-valued function.

  4. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  5. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    The integral over this curve can then be computed using the residue theorem. Often, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of the integral, the one we were originally interested in.

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    Such integrals are known as line integrals and surface integrals respectively. These have important applications in physics, as when dealing with vector fields. A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use.

  7. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    By using the Cauchy integral theorem, one can show that the integral over C (or the closed rectifiable curve) is equal to the same integral taken over an arbitrarily small circle around a. Since f(z) is continuous, we can choose a circle small enough on which f(z) is arbitrarily close to f(a). On the other hand, the integral =, over any circle ...

  8. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    A more general definition can be given in terms of partitions of the contour in analogy with the partition of an interval and the Riemann integral. In both cases the integral over a contour is defined as the sum of the integrals over the directed smooth curves that make up the contour.

  9. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Integration around a closed curve in the clockwise sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral): ∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ = − {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} ∂ S {\displaystyle ...