Search results
Results from the WOW.Com Content Network
With each fold a certain amount of paper is lost to potential folding. The loss function for folding paper in half in a single direction was given to be L = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , where L is the minimum length of the paper (or other material), t is the material's thickness, and ...
The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).
The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.
In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases ...
For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable for hinged panels of rigid material rather than flexible paper), the condition of Kawasaki's theorem turns out to be sufficient for a single-vertex crease pattern to move from an unfolded state to a flat-folded state.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).
1. Lay the towel vertically on a flat surface, tag side up. 2. Make a small fold from the bottom (the side nearest you), turning under a section of towel about the width of your palm.