Search results
Results from the WOW.Com Content Network
With each fold a certain amount of paper is lost to potential folding. The loss function for folding paper in half in a single direction was given to be L = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , where L is the minimum length of the paper (or other material), t is the material's thickness, and ...
Folding endurance is especially applicable for papers used for maps, bank notes, archival documents, etc. The direction of the grain in relation to the folding line, the type of fibres used, the fibre contents, the calliper of the test piece, etc., as well as which type of folding tester that is used affect how many double folds a test piece ...
Heighway dragon curve. A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems.The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.
In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases ...
For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable for hinged panels of rigid material rather than flexible paper), the condition of Kawasaki's theorem turns out to be sufficient for a single-vertex crease pattern to move from an unfolded state to a flat-folded state.
Ab initio quantum mechanical and chemical methods may be used to calculate the potential energy of a system on the fly, as needed for conformations in a trajectory. This calculation is usually made in the close neighborhood of the reaction coordinate. Although various approximations may be used, these are based on theoretical considerations ...
The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (f i), we can define a general paperfolding sequence with folding instructions (f i).
Fold number refers to how many double folds that are required to cause rupture of a paper test piece under standardized conditions. Fold number is defined in ISO 5626:1993 as the antilogarithm of the mean folding endurance: [ 1 ]