enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    With each fold a certain amount of paper is lost to potential folding. The loss function for folding paper in half in a single direction was given to be L = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , where L is the minimum length of the paper (or other material), t is the material's thickness, and ...

  3. Fold-and-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Fold-and-cut_theorem

    The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).

  4. Map folding - Wikipedia

    en.wikipedia.org/wiki/Map_folding

    In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases ...

  5. Kawasaki's theorem - Wikipedia

    en.wikipedia.org/wiki/Kawasaki's_theorem

    For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable for hinged panels of rigid material rather than flexible paper), the condition of Kawasaki's theorem turns out to be sufficient for a single-vertex crease pattern to move from an unfolded state to a flat-folded state.

  6. Geometric Folding Algorithms - Wikipedia

    en.wikipedia.org/wiki/Geometric_Folding_Algorithms

    Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).

  7. Dragon curve - Wikipedia

    en.wikipedia.org/wiki/Dragon_curve

    Heighway dragon curve. A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems.The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.

  8. Maekawa's theorem - Wikipedia

    en.wikipedia.org/wiki/Maekawa's_theorem

    Maekawa's theorem is a theorem in the mathematics of paper folding named after Jun Maekawa. It relates to flat-foldable origami crease patterns and states that at every vertex, the numbers of valley and mountain folds always differ by two in either direction. [1] The same result was also discovered by Jacques Justin [2] and, even earlier, by S ...

  9. Geometric Exercises in Paper Folding - Wikipedia

    en.wikipedia.org/wiki/Geometric_Exercises_in...

    Geometric Exercises in Paper Folding is a book on the mathematics of paper folding. It was written by Indian mathematician T. Sundara Row, first published in India in 1893, and later republished in many other editions. Its topics include paper constructions for regular polygons, symmetry, and algebraic curves. According to the historian of ...