enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    With each fold a certain amount of paper is lost to potential folding. The loss function for folding paper in half in a single direction was given to be L = π t 6 ( 2 n + 4 ) ( 2 n − 1 ) {\displaystyle L={\tfrac {\pi t}{6}}(2^{n}+4)(2^{n}-1)} , where L is the minimum length of the paper (or other material), t is the material's thickness, and ...

  3. Kawasaki's theorem - Wikipedia

    en.wikipedia.org/wiki/Kawasaki's_theorem

    For rigid origami (a type of folding that keeps the surface flat except at its folds, suitable for hinged panels of rigid material rather than flexible paper), the condition of Kawasaki's theorem turns out to be sufficient for a single-vertex crease pattern to move from an unfolded state to a flat-folded state.

  4. Folding endurance - Wikipedia

    en.wikipedia.org/wiki/Folding_endurance

    Folding endurance is especially applicable for papers used for maps, bank notes, archival documents, etc. The direction of the grain in relation to the folding line, the type of fibres used, the fibre contents, the calliper of the test piece, etc., as well as which type of folding tester that is used affect how many double folds a test piece ...

  5. Fold-and-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Fold-and-cut_theorem

    The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).

  6. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...

  7. Maekawa's theorem - Wikipedia

    en.wikipedia.org/wiki/Maekawa's_theorem

    Maekawa's theorem is a theorem in the mathematics of paper folding named after Jun Maekawa. It relates to flat-foldable origami crease patterns and states that at every vertex, the numbers of valley and mountain folds always differ by two in either direction. [1] The same result was also discovered by Jacques Justin [2] and, even earlier, by S ...

  8. Folding (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Folding_(chemistry)

    In chemistry, folding is the process by which a molecule assumes its shape or conformation. The process can also be described as intramolecular self-assembly , a type of molecular self-assembly , where the molecule is directed to form a specific shape through noncovalent interactions , such as hydrogen bonding , metal coordination, hydrophobic ...

  9. Geometric Exercises in Paper Folding - Wikipedia

    en.wikipedia.org/wiki/Geometric_Exercises_in...

    Geometric Exercises in Paper Folding is a book on the mathematics of paper folding. It was written by Indian mathematician T. Sundara Row, first published in India in 1893, and later republished in many other editions. Its topics include paper constructions for regular polygons, symmetry, and algebraic curves. According to the historian of ...