Search results
Results from the WOW.Com Content Network
If the pressure is increased by the addition of an inert gas, then neither the composition at equilibrium nor the equilibrium constant are appreciably affected (because the partial pressures remain constant, assuming an ideal-gas behaviour of all gases involved). However, the composition at equilibrium will depend appreciably on pressure when:
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p.
The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...
K ow, being a type of partition coefficient, serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in water. [citation needed]
Symbol used to represent in situ permeability tests in geotechnical drawings. In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k.
Since the days of ancient Rome, the concept of communicating vessels has been used for indoor plumbing, via aquifers and lead pipes. Water will reach the same level in all parts of the system, which acts as communicating vessels, regardless of what the lowest point is of the pipes – although in practical terms the lowest point of the system depends on the ability of the plumbing to withstand ...