Search results
Results from the WOW.Com Content Network
Telecommunication systems strive to increase the ratio of signal level to noise level in order to effectively transfer data. Noise in telecommunication systems is a product of both internal and external sources to the system. Noise is a random process, characterized by stochastic properties such as its variance, distribution, and spectral density.
SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems. A high SNR means that the signal is clear and easy to detect or interpret, while a low SNR means that the signal is ...
The noise equivalent bandwidth (or equivalent noise bandwidth (enbw)) of a system of frequency response is the bandwidth of an ideal filter with rectangular frequency response centered on the system's central frequency that produces the same average power outgoing () when both systems are excited with a white noise source. The value of the ...
Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often ...
/ must be used with care on interference-limited channels since additive white noise (with constant noise density ) is assumed, and interference is not always noise-like. In spread spectrum systems (e.g., CDMA), the interference is sufficiently noise-like that it can be represented as and added to the thermal noise to produce the overall ratio
Commonly, the noise in a communication system can be expressed as adding or subtracting from the desirable signal via a random process. This form of noise is called additive noise , with the understanding that the noise can be negative or positive at different instances.
An optical communication system is any form of communications system that uses light as the transmission medium. Equipment consists of a transmitter, which encodes a message into an optical signal, a communication channel, which carries the signal to its destination, and a receiver, which reproduces the message from the received optical signal.
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR [1]) (also known as the signal-to-noise-plus-interference ratio (SNIR) [2]) is a quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems such as networks.