enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  3. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  4. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...

  5. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    r is the distance between the two bodies' centers of mass; a is the length of the semi-major axis (a > 0 for ellipses, a = ∞ or 1/a = 0 for parabolas, and a < 0 for hyperbolas) G is the gravitational constant; M is the mass of the central body; The product of GM can also be expressed as the standard gravitational parameter using the Greek ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  8. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    By 1680, new values for the diameter of the Earth improved his orbit time to within 1.6%, but more importantly Newton had found a proof of his earlier conjecture. [ 8 ] : 201 In 1687 Newton published his Principia which combined his laws of motion with new mathematical analysis to explain Kepler's empirical results.

  9. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Solving (1) is an elementary differential equation, thus the steps leading to a unique solution for v x and, subsequently, x will not be enumerated. Given the initial conditions v x = v x 0 {\displaystyle v_{x}=v_{x0}} (where v x0 is understood to be the x component of the initial velocity) and x = 0 {\displaystyle x=0} for t = 0 {\displaystyle ...