Search results
Results from the WOW.Com Content Network
The IEEE symbol for the cubic foot per second is ft 3 /s. [1] The following other abbreviations are also sometimes used: ft 3 /sec; cu ft/s; cfs or CFS; cusec; second-feet; The flow or discharge of rivers, i.e., the volume of water passing a location per unit of time, is commonly expressed in units of cubic feet per second or cubic metres per second.
Cubic metre per second or cubic meter per second in American English (symbol m 3 ⋅ s −1 or m 3 /s) is the unit of volumetric flow rate in the International System of Units (SI). It corresponds to the exchange or movement of the volume of a cube with sides of one metre (39.37 in) in length (a cubic meter , originally a stere ) each second .
cubic centimetre of atmosphere; standard cubic centimetre: cc atm; scc ≡ 1 atm × 1 cm 3 = 0.101 325 J: cubic foot of atmosphere; standard cubic foot: cu ft atm; scf ≡ 1 atm × 1 ft 3 = 2.869 204 480 9344 × 10 3 J: cubic foot of natural gas: ≡ 1000 BTU IT = 1.055 055 852 62 × 10 6 J: cubic yard of atmosphere; standard cubic yard: cu yd ...
The units that are typically used to express discharge in streams or rivers include m 3 /s (cubic meters per second), ft 3 /s (cubic feet per second or cfs) and/or acre-feet per day. [2] A commonly applied methodology for measuring, and estimating, the discharge of a river is based on a simplified form of the continuity equation.
Yet other definitions are in use for industrial gas, [5] where, in the US, a standard cubic foot for industrial gas use is defined at 70 °F (21.1 °C) and 14.696 psia (101.325 kPa), while in Canada, a standard cubic meter for industrial gas use is defined at 15 °C (59 °F) and 101.325 kPa (14.696 psia).
Mean flow in cubic feet of water per second (cfs). One cubic foot equals .0283 cubic meters. River cubic feet per second flow Location of monitoring station
Mean flow in cubic feet of water per second (cfs). One cubic foot equals .0283 cubic meters River Cubic feet per second flow
A stream hydrograph is commonly determining the influence of different hydrologic processes on discharge from the subject catchment. Because the timing, magnitude, and duration of groundwater return flow differs so greatly from that of direct runoff, separating and understanding the influence of these distinct processes is key to analyzing and simulating the likely hydrologic effects of ...