enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    Archimedes provides the first attested solution to this problem by focusing specifically on the area bounded by a parabola and a chord. [3] Archimedes gives two proofs of the main theorem: one using abstract mechanics and the other one by pure geometry. In the first proof, Archimedes considers a lever in equilibrium under the action of gravity ...

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;

  4. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral

  5. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    Archimedes' achievements in this area include a proof of the law of the lever, [10] the widespread use of the concept of center of gravity, [11] and the enunciation of the law of buoyancy known as Archimedes' principle. [12] In astronomy, he made measurements of the apparent diameter of the Sun and the size of the universe.

  6. On the Equilibrium of Planes - Wikipedia

    en.wikipedia.org/wiki/On_the_Equilibrium_of_Planes

    The lever and its properties were already well known before the time of Archimedes, and he was not the first to provide an analysis of the principle involved. [5] The earlier Mechanical Problems, once attributed to Aristotle but most likely written by one of his successors, contains a loose proof of the law of the lever without employing the concept of centre of gravity.

  7. Law of demand - Wikipedia

    en.wikipedia.org/wiki/Law_of_demand

    The law of demand, however, only makes a qualitative statement in the sense that it describes the direction of change in the amount of quantity demanded but not the magnitude of change. The law of demand is represented by a graph called the demand curve, with quantity demanded on the x-axis and price on the y-axis. Demand curves are downward ...

  8. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...

  9. On Conoids and Spheroids - Wikipedia

    en.wikipedia.org/wiki/On_Conoids_and_Spheroids

    A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).