Search results
Results from the WOW.Com Content Network
The net magnetic moment of any system is a vector sum of contributions from one or both types of sources. For example, the magnetic moment of an atom of hydrogen-1 (the lightest hydrogen isotope, consisting of a proton and an electron) is a vector sum of the following contributions: the intrinsic moment of the electron,
More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion [note 1] of a general magnetic field. Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a ...
The magnetic field is decreasing leading to a coherent magnetization rotation from 1 to 2 At positive field, the magnetization switch brutally from 2 to 3 by nucleation and propagation of magnetic domains giving a first coercive field named here H 1 {\displaystyle H_{1}}
Magnetic moment strength (from lower to higher orders of magnitude) Factor (m 2 ⋅A) Value Item 10 −45: 9.0877 × 10 −45 m 2 ⋅A [1] Unit of magnetic moment in the Planck system of units. 10 −27: 4.330 7346 × 10 −27 m 2 ⋅A: Magnetic moment of a deuterium nucleus 10 −26: 1.410 6067 × 10 −26 m 2 ⋅A: Magnetic moment of a proton ...
where μ 0 is the magnetic constant, r̂ is a unit vector parallel to the line joining the centers of the two dipoles, and | r | is the distance between the centers of m 1 and m 2. Last term with δ {\displaystyle \delta } -function vanishes everywhere but the origin, and is necessary to ensure that ∇ ⋅ B {\displaystyle \nabla \cdot \mathbf ...
The magnetic moment would later be explained in quantum theory by the Bohr magneton (), which is used in the Brillouin function. It could be noted that there is a difference in the approaches of Langevin and Bohr, since Langevin assumes a magnetic polarization μ {\displaystyle \mu } as the basis for the derivation, while Bohr start the ...
While the transfer of angular momentum on a magnetic moment from an applied magnetic field is shown to cause precession of the moment about the field axis, the rotation of the moment into alignment with the field occurs through damping processes. Atomic-level dynamics involves interactions between magnetization, electrons, and phonons. [3]
where is the total angular momentum quantum number, and is the g-factor (such that = is the magnetic moment). For a two-level system with magnetic moment , the formula reduces to =, as above, while the corresponding expressions in Gaussian units are = (+), =.