Search results
Results from the WOW.Com Content Network
Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees). As such, the regular digon is a constructible polygon. [3] Some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean ...
Such polygons may have any number of sides greater than 1. Two-sided spherical polygons—lunes, also called digons or bi-angles—are bounded by two great-circle arcs: a familiar example is the curved outward-facing surface of a segment of an orange. Three arcs serve to define a spherical triangle, the principal subject of this article.
A spherical polygon is a circuit of arcs of great circles (sides) and vertices on the surface of a sphere. It allows the digon, a polygon having only two sides and two corners, which is impossible in a flat plane. Spherical polygons play an important role in cartography (map making) and in Wythoff's construction of the uniform polyhedra.
These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...
A dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges.In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q). [1]
Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
This means that spherical symmetry occurs in an organism if it is able to be cut into two identical halves through any cut that runs through the organism's center. True spherical symmetry is not found in animal body plans. [1] Organisms which show approximate spherical symmetry include the freshwater green alga Volvox. [7]
Skew polygons can be created via the blending operation. The blend of two polygons P and Q, written P#Q, can be constructed as follows: take the cartesian product of their vertices V P × V Q. add edges (p 0 × q 0, p 1 × q 1) where (p 0, p 1) is an edge of P and (q 0, q 1) is an edge of Q. select an arbitrary connected component of the result.