enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transcranial Doppler - Wikipedia

    en.wikipedia.org/wiki/Transcranial_Doppler

    Transcranial Doppler (TCD) and transcranial color Doppler (TCCD) are types of Doppler ultrasonography that measure the velocity of blood flow through the brain 's blood vessels by measuring the echoes of ultrasound waves moving transcranially (through the cranium). These modes of medical imaging conduct a spectral analysis of the acoustic ...

  3. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity[1][2] in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed. It is also called velocity field; when ...

  4. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    v. t. e. In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate.

  5. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Bernoulli's equation. pconstant is the total pressure at a point on a streamline. p ρ u 2 2 ρ g y p c o n s t a n t. Euler equations. ρ = fluid mass density. u is the flow velocity vector. E = total volume energy density. U = internal energy per unit mass of fluid. p = pressure.

  6. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip, center-line velocity) and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the ...

  7. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  8. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The vorticity equation can be derived from the Navier–Stokes equation for the conservation of angular momentum. In the absence of any concentrated torques and line forces, one obtains: Now, vorticity is defined as the curl of the flow velocity vector; taking the curl of momentum equation yields the desired equation.

  9. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    Oseen equations. In fluid dynamics, the Oseen equations (or Oseen flow) describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.