enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    Every field is an integral domain. For example, the field of all real numbers is an integral domain. Conversely, every Artinian integral domain is a field. In particular, all finite integral domains are finite fields (more generally, by Wedderburn's little theorem, finite domains are finite fields).

  3. Field of fractions - Wikipedia

    en.wikipedia.org/wiki/Field_of_fractions

    The field of fractions of an integral domain is sometimes denoted by ⁡ or ⁡ (), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of . All four are in common usage, but are not to be confused with the quotient of a ring by an ideal , which is a quite different concept.

  4. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.

  5. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  6. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.

  7. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    The field is the field of fractions of the integral domain . This way one can get back and forth between the algebraic number field K {\displaystyle K} and its ring of integers O K {\displaystyle {\mathcal {O}}_{K}} .

  8. Valuation ring - Wikipedia

    en.wikipedia.org/wiki/Valuation_ring

    In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x −1 belongs to D.. Given a field F, if D is a subring of F such that either x or x −1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F.

  9. Integrally closed domain - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed_domain

    In particular, this means that any element of L integral over A is root of a monic polynomial in A[X] that is irreducible in K[X]. If A is a domain contained in a field K, we can consider the integral closure of A in K (i.e. the set of all elements of K that are integral over A). This integral closure is an integrally closed domain.