Search results
Results from the WOW.Com Content Network
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
Constraint satisfaction toolkits are software libraries for imperative programming languages that are used to encode and solve a constraint satisfaction problem. Cassowary constraint solver, an open source project for constraint satisfaction (accessible from C, Java, Python and other languages). Comet, a commercial programming language and toolkit
As a result, the constraint satisfaction problem can be used to set a constraint whose relation is the table on the right, which may not be in the constraint language. As a result, if a constraint satisfaction problem has the table on the left as its set of solutions, every relation can be expressed by projecting over a suitable set of variables.
Decomposition methods create a problem that is easy to solve from an arbitrary one. Each variable of this new problem is associated to a set of original variables; its domain contains tuples of values for the variables in the associated set; in particular, these are the tuples that satisfy a set of constraints over these variables.
Another method for finding out whether a constraint satisfaction problem has a join tree uses the primal graph of the problem, rather than the dual graph. The primal graph of a constraint satisfaction problem is a graph whose nodes are problem variables and whose edges represent the presence of two variables in the same constraint. A join tree ...
Constraint propagation in constraint satisfaction problems is a typical example of a refinement model, and formula evaluation in spreadsheets are a typical example of a perturbation model. The refinement model is more general, as it does not restrict variables to have a single value, it can lead to several solutions to the same problem.
The soft satisfiability problem (soft-SAT), given a set of SAT problems, asks for the maximum number of those problems which can be satisfied by any assignment. [16] The minimum satisfiability problem. The MAX-SAT problem can be extended to the case where the variables of the constraint satisfaction problem belong to the set
A Sudoku may also be modelled as a constraint satisfaction problem. In his paper Sudoku as a Constraint Problem, [14] Helmut Simonis describes many reasoning algorithms based on constraints which can be applied to model and solve problems. Some constraint solvers include a method to model and solve Sudokus, and a program may require fewer than ...