Search results
Results from the WOW.Com Content Network
SHA-256: 256 bits Merkle–Damgård construction: SHA-384: 384 bits Merkle–Damgård construction: SHA-512: 512 bits Merkle–Damgård construction: SHA-3 (subset of Keccak) arbitrary sponge function: Skein: arbitrary Unique Block Iteration: Snefru: 128 or 256 bits hash Spectral Hash: 512 bits wide-pipe Merkle–Damgård construction Streebog ...
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
BLAKE was submitted to the NIST hash function competition by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. In 2008, there were 51 entries. BLAKE made it to the final round consisting of five candidates but lost to Keccak in 2012, which was selected for the SHA-3 algorithm.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
File verification is the process of using an algorithm for verifying the integrity of a computer file, usually by checksum.This can be done by comparing two files bit-by-bit, but requires two copies of the same file, and may miss systematic corruptions which might occur to both files.
sha1sum is a computer program that calculates and verifies SHA-1 hashes.It is commonly used to verify the integrity of files. It (or a variant) is installed by default on most Linux distributions.
SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche: RadioGatún: Website Specification: Streebog: 2012 FSB, InfoTeCS JSC RFC 6986: Tiger: 1995 Ross Anderson Eli Biham: Website Specification: Whirlpool: 2004 Vincent Rijmen Paulo Barreto: Website
The content of such spam may often vary in its details, which would render normal checksumming ineffective. By contrast, a "fuzzy checksum" reduces the body text to its characteristic minimum, then generates a checksum in the usual manner. This greatly increases the chances of slightly different spam emails producing the same checksum.