enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Advance ratio - Wikipedia

    en.wikipedia.org/wiki/Advance_ratio

    The advance ratio is critical for determining the efficiency of a propeller. At different advance ratios, the propeller may produce more or less thrust. Engineers use this ratio to optimize the design of the propeller and the engine, ensuring that the vehicle operates efficiently at its intended cruising speed, see propeller theory.

  3. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    Propulsive efficiency comparison for various gas turbine engine configurations. The calculation is somewhat different for reciprocating and turboprop engines which rely on a propeller for propulsion since their output is typically expressed in terms of power rather than thrust. The equation for heat added per unit time, Q, can be adopted as ...

  4. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    P R curve for the light aircraft with the drag curve above and weighing 2000 kg, with a wing area of 15 m² and a propeller efficiency of 0.8. W = (ρ/2).S.V 2.C L and P R = (ρ/2η).S.V 3.C D. The extra factor of V /η, with η the propeller efficiency, in the second equation enters because P R = (required thrust)× V /η. Power rather than ...

  5. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    The essence of the actuator-disc theory is that if the slip is defined as the ratio of fluid velocity increase through the disc to vehicle velocity, the Froude efficiency is equal to 1/(slip + 1). [2] Thus a lightly loaded propeller with a large swept area can have a high Froude efficiency.

  6. Blade element theory - Wikipedia

    en.wikipedia.org/wiki/Blade_element_theory

    This is a two-bladed propeller 3 ft. in diameter, with a uniform geometrical pitch of 2.1 ft. (or a pitch-diameter ratio of 0.7). The blades have standard propeller sections based on the R.A.F-6 airfoil (Fig. 6), and the blade widths, thicknesses, and angles are as given in the first part of Table I.

  7. Range (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Range_(aeronautics)

    The logarithmic term with weight ratios is replaced by the direct ratio between / = where is the energy per mass of the battery (e.g. 150-200 Wh/kg for Li-ion batteries), the total efficiency (typically 0.7-0.8 for batteries, motor, gearbox and propeller), / lift over drag (typically around 18), and the weight ratio / typically around 0.3.

  8. Zero-lift drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Zero-lift_drag_coefficient

    For example, a Sopwith Camel biplane of World War I which had many wires and bracing struts as well as fixed landing gear, had a zero-lift drag coefficient of approximately 0.0378. Compare a C D , 0 {\displaystyle C_{D,0}} value of 0.0161 for the streamlined P-51 Mustang of World War II [ 1 ] which compares very favorably even with the best ...

  9. Jet engine performance - Wikipedia

    en.wikipedia.org/wiki/Jet_engine_performance

    The type of jet engine used to explain the conversion of fuel into thrust is the ramjet.It is simpler than the turbojet which is, in turn, simpler than the turbofan.It is valid to use the ramjet example because the ramjet, turbojet and turbofan core all use the same principle to produce thrust which is to accelerate the air passing through them.