enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". [1] An overfitted model is a mathematical model that contains more parameters than can be justified by the data. [2]

  3. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Suppose, to address the question of gender discrimination, we have survey data on salaries within a particular field, e.g., computer software. It is known women are under-represented considerably in a random sample of software engineers, which would be important when adjusting for other variables such as years employed and current level of ...

  4. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    The purpose of the comparison is to determine which candidate model is most appropriate for statistical inference. Common criteria for comparing models include the following: R 2, Bayes factor, and the likelihood-ratio test together with its generalization relative likelihood. For more on this topic, see statistical model selection.

  5. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  6. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In mathematics, statistics, finance, [1] and computer science, particularly in machine learning and inverse problems, regularization is a process that converts the answer of a problem to a simpler one. It is often used in solving ill-posed problems or to prevent overfitting. [2]

  7. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    The form the population iteration, which converges to , but cannot be used in computation, while the form the sample iteration which usually converges to an overfitting solution. We want to control the difference between the expected risk of the sample iteration and the minimum expected risk, that is, the expected risk of the regression function:

  8. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  9. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    A model can be validated only relative to some application area. [2] [3] A model that is valid for one application might be invalid for some other applications. As an example, consider the curve in Figure 1: if the application only used inputs from the interval [0, 2], then the curve might well be an acceptable model.