Search results
Results from the WOW.Com Content Network
Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution. A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another.
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
Illustration of a eukaryotic cell membrane Comparison of a eukaryotic vs. a prokaryotic cell membrane. The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space).
Alpha-helical proteins are present in the inner membranes of bacterial cells or the plasma membrane of eukaryotic cells, and sometimes in the bacterial outer membrane. [5] This is the major category of transmembrane proteins. In humans, 27% of all proteins have been estimated to be alpha-helical membrane proteins. [6]
Schematic diagram of the 2D structure of aquaporin 1 depicting the six transmembrane alpha-helices and the five interhelical loop regions A-E The 3D structure of aquaporin Z highlighting the 'hourglass'-shaped water channel that cuts through the center of the protein. Aquaporin proteins are composed of a bundle of six transmembrane α-helices ...
In molecular biology, the term macromolecular assembly (MA) refers to massive chemical structures such as viruses and non-biologic nanoparticles, cellular organelles and membranes and ribosomes, etc. that are complex mixtures of polypeptide, polynucleotide, polysaccharide or other polymeric macromolecules.
The Notch binding allows groups of cells to organize themselves such that, if one cell expresses a given trait, this may be switched off in neighbouring cells by the intercellular notch signal. In this way, groups of cells influence one another to make large structures. Thus, lateral inhibition mechanisms are key to Notch signaling.
The nature of biological membranes, especially that of its lipids, is amphiphilic, as they form bilayers that contain an internal hydrophobic layer and an external hydrophilic layer. This structure makes transport possible by simple or passive diffusion , which consists of the diffusion of substances through the membrane without expending ...