enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.

  3. Onsager reciprocal relations - Wikipedia

    en.wikipedia.org/wiki/Onsager_reciprocal_relations

    The basic thermodynamic potential is internal energy.In a simple fluid system, neglecting the effects of viscosity, the fundamental thermodynamic equation is written: = + where U is the internal energy, T is temperature, S is entropy, P is the hydrostatic pressure, V is the volume, is the chemical potential, and M mass.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  5. Orders of magnitude (pressure) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(pressure)

    +1.9 psi High air pressure for human lung, measured for trumpet player making staccato high notes [48] < +16 kPa +2.3 psi Systolic blood pressure in a healthy adult while at rest (< 120 mmHg) (gauge pressure) [44] +19.3 kPa +2.8 psi High end of lung pressure, exertable without injury by a healthy person for brief times [citation needed] +34 kPa ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for ...

  7. Internal pressure - Wikipedia

    en.wikipedia.org/wiki/Internal_pressure

    Internal pressure can be expressed in terms of temperature, pressure and their mutual dependence: = This equation is one of the simplest thermodynamic equations.More precisely, it is a thermodynamic property relation, since it holds true for any system and connects the equation of state to one or more thermodynamic energy properties.

  8. Thermal pressure - Wikipedia

    en.wikipedia.org/wiki/Thermal_Pressure

    In thermodynamics, thermal pressure (also known as the thermal pressure coefficient) is a measure of the relative pressure change of a fluid or a solid as a response to a temperature change at constant volume. The concept is related to the Pressure-Temperature Law, also known as Amontons's law or Gay-Lussac's law. [1]

  9. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .