enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dyne - Wikipedia

    en.wikipedia.org/wiki/Dyne

    The dyne per centimetre is a unit traditionally used to measure surface tension. For example, the surface tension of distilled water is 71.99 dyn/cm at 25 °C (77 °F). [ 4 ] ( In SI units this is 71.99 × 10 −3 N/m or 71.99 mN/m .)

  3. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units , one joule corresponds to one kilogram - square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2 ).

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    J⋅m −3: L −1 M T −2: intensive Entropy: S: Logarithmic measure of the number of available states of a system J/K L 2 M T −2 Θ −1: extensive, scalar Force: F →: Transfer of momentum per unit time newton (N = kg⋅m⋅s −2) L M T −2: extensive, vector Frequency: f: Number of (periodic) occurrences per unit time hertz (Hz = s ...

  5. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    The calorie is defined as the amount of thermal energy necessary to raise the temperature of one gram of water by 1 Celsius degree, from a temperature of 14.5 °C, at a pressure of 1 atm. For thermochemistry a calorie of 4.184 J is used, but other calories have also been defined, such as the International Steam Table calorie of 4.1868 J.

  6. Erg - Wikipedia

    en.wikipedia.org/wiki/Erg

    An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre. In the CGS base units, it is equal to one gram centimetre-squared per second-squared (g⋅cm 2 /s 2). It is thus equal to 10 −7 joules or 100 nanojoules in SI units. 1 erg = 10 −7 J = 100 nJ; 1 erg = 10 −10 sn⋅m = 100 psn⋅m = 100 ...

  7. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  8. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    The time required for a quantity to fall to half its value as measured at the beginning of the time period. In physics, half-life typically refers to a property of radioactive decay, but may refer to any quantity which follows an exponential decay. Hamilton's principle Hamiltonian mechanics harmonic mean heat

  9. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...