Search results
Results from the WOW.Com Content Network
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
Antipodal point, the point diametrically opposite to another point on a sphere, such that a line drawn between them passes through the centre of the sphere and forms a true diameter; Conjugate point, any point that can almost be joined to another by a 1-parameter family of geodesics (e.g., the antipodes of a sphere, which are linkable by any ...
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
Points with equal power, isolines of (), are circles concentric to circle . Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
H.M. – harmonic mean. HOL – higher-order logic. Hom – Hom functor. hom – hom-class. hot – higher order term. HOTPO – half or triple plus one. hvc – havercosine function. (Also written as havercos.) hyp – hypograph of a function.
In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d).
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]