Search results
Results from the WOW.Com Content Network
where: [2] Q f = total residual flow during the test (gallons per minute); c = discharge coefficient (unitless). This is usually 1.0 if using a diffuser. If using a wand to measure the stagnation pressure, the coefficient value depends on the shape of the flow hydrant orifice.
The hydraulic calculation procedure is defined in the applicable reference model codes such as that published by the US-based National Fire Protection Association (NFPA), [2] or the EN 12845 standard, Fixed firefighting system – Automatic sprinkler systems – Design, installation and maintenance. [3]
This can be used to calculate mean values (expectations) of the flow rates, head losses or any other variables of interest in the pipe network. This analysis has been extended using a reduced-parameter entropic formulation, which ensures consistency of the analysis regardless of the graphical representation of the network. [ 3 ]
Williams, Gardner Stewart; Hazen, Allen (1920), Hydraulic tables: the elements of gagings and the friction of water flowing in pipes, aqueducts, sewers, etc., as determined by the Hazen and Williams formula and the flow of water over sharp-edged and irregular weirs, and the quantity discharged as determined by Bazin's formula and experimental ...
In order to be "matched" all sprinkler heads in a given zone must have the same rate of precipitation. This can be achieved by matching the gallonage of a standard rotor to its arc and reducing range accordingly (i.e. 2 gallons at 90 degrees, 4 gallons at 180 degrees, or 8 gallons if the head does a full circle) or by using MPR nozzles or ...
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
After the design area and density have been determined, calculations are performed to prove that the system can deliver the required amount of water over the required design area. These calculations account for all of the water pressure that is lost or gained between the water supply source and the sprinklers that would operate in the design area.
It is important to note that the gradually varied flow equations and associated numerical methods (including the standard step method) cannot accurately model the dynamics of a hydraulic jump. [6] See the Hydraulic jumps in rectangular channels page for more information. Below, an example problem will use conceptual models to build a surface ...