enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.

  3. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    However, in special cases the Markov and Chebyshev inequalities often give much weaker information than is otherwise available. For example, in the case of an unweighted dice, Chebyshev's inequality says that odds of rolling between 1 and 6 is at least 53%; in reality, the odds are of course 100%. [38]

  4. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    Using the Markov inequality to bound the desired probability: ... When m = 1 we get the earlier formula for the expectation. Common generalization, also due to Erdős ...

  5. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."

  6. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Markov's inequality (proof of a generalization) Mean value theorem; Multivariate normal distribution (to do) Holomorphic functions are analytic; Pythagorean theorem; Quadratic equation; Quotient rule; Ramsey's theorem; Rao–Blackwell theorem; Rice's theorem; Rolle's theorem; Splitting lemma; squeeze theorem; Sum rule in differentiation; Sum ...

  7. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, when applied to sums the Chernoff bound requires the random variables to be independent, a condition that is not required by either Markov's inequality or ...

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square implies convergence in mean. Additionally,

  9. Chebyshev–Markov–Stieltjes inequalities - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Markov...

    In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]